
CS 4530 Software Engineering

Module 14: Continuous Development Processes

Khoury College of Computer Sciences
© 2024 released under CC BY-SA

Jon Bell, Adeel Bhutta and Mitch Wand
Khoury College of Computer Sciences

http://creativecommons.org/licenses/by-sa/4.0/


Learning objectives for this lesson
• By the end of this lesson, you should be able 

to…
• Describe how continuous development helps to 

catch errors sooner in the software lifecycle
• Describe strategies for performing quality-

assurance on software as and after it is delivered
• Compare and contrast continuous delivery with 

test driven development as a quality assurance 
strategy



Review: The Agile Model Reduces Risk by 
Embracing Change (~2000)
• The Waterfall philosophy: 
• "The project is too large and complex, and it will take 

months (or years!) to plan, so once we come up with the 
plan, that plan can not change"
• Reduce risk by proceeding in stages

• The Agile philosophy:
• The project is too large and complex, it is unlikely that we 

will know exactly what we need right now, and to some 
extent, we are inventing something new. We think that 
as we make it, we will figure it out as we go”
• Reduce risk by limiting time on any one stage; then 

reassess. (“time-boxing”)

3



Review: Test Driven Development (TDD) 
creates fast feedback loops

4

User story & 
conditions of 
satisfaction

1. Start here

2. Write a test

3. Write code

4. Refactor design

5. Strengthen 
Test

Failing 
Test

Passing 
Test

Passing 
Test, 

better 
design



Agile values fast quality feedback loops
Faster feedback = lower cost to fix bugs



Example: Some bugs slip through testing, 
even in highly-regulated industries

6https://www.adn.com/alaska-news/aviation/2023/02/20/after-alaska-airlines-planes-bump-runway-a-scramble-to-pull-the-plug/

“That morning, a software bug in an update to the 
DynamicSource tool caused it to provide seriously undervalued 
weights for the airplanes.

The Alaska 737 captain said the data was on the order of 20,000 
to 30,000 pounds light. With the total weight of those jets at 
150,000 to 170,000 pounds, the error was enough to skew the 
engine thrust and speed settings.

Both planes headed down the runway with less power and at 
lower speed than they should have. And with the jets judged 
lighter than they actually were, the pilots rotated too early

Both the Max 9 and 737-900ER have long passenger cabins, 
which makes them more vulnerable to a tail strike when the nose 
comes up too soon.” …

… “A quick interim fix proved easy: When operations staff turned 
off the automatic uplink of the data to the aircraft and switched 
to manual requests “we didn’t have the bug anymore.”

Peyton said his team also checked the integrity of the calculation 
itself before lifting the stoppage. All that was accomplished in 20 
minutes.

The software code was permanently repaired about five hours 
later.

Peyton added that even though the update to the 
DynamicSource software had been tested over an extended 
period, the bug was missed because it only presented when 
many aircraft at the same time were using the system.

Subsequently, a test of the software under high demand was 
developed.”

Photo: saiters_photography (IG, different plane/airpot)

https://www.adn.com/alaska-news/aviation/2023/02/20/after-alaska-airlines-planes-bump-runway-a-scramble-to-pull-the-plug/


Continuous development practices improves code 
quality and dev velocity

• Continuous integration: Perform frequent integrations with entire 
codebase, running integration-scale tests

• Continuous delivery: Deploy frequently and monitor

Code Review Style Check

Compile

Unit Test

Prepare 
Deployment

Integration 
Test

Load Test

KPIsEnd-to-end 
Test

Develop Build Test Deploy Monitor



Continuous Integration (CI) provides global 
feedback on local changes
• Given: Our systems involve many components, some of which might even be in 

different version control repositories
• Consider: How does a developer get feedback on their (local) change?



CI is triggered by commits, pull requests, 
and other actions
Example: Small scale CI, with a service like CircleCI, 
GitHub Actions or TravisCI

commits code to

Developer

GitHub

TravisCI

checks for updates

Runs build for 
each commit

GitHub
ActionsCircleCI



CI is a software pipeline

0…………….

Code Review Style Check

Compile

Unit Test

Prepare 
Deployment

Integration 
Test

Load Test

Automate this centrally, provide a central record of results

KPIsEnd-to-end 
Test

Develop Build Test Deploy Monitor



Automating Feedback Loops is Powerful
Consider tasks that are done by dozens of developers (e.g. 

testing/deployment)

© Randal Munroe/xkcd, licensed CC-BY-SA
https://xkcd.com/1205/ 

https://xkcd.com/1205/


CI In Practice: Autograder

name: 'Build and Test the Grader'
on: # rebuild any PRs and main branch changes
 pull_request:
 push:
  branches:
   - main
   - 'releases/*'

jobs:
 build:
  runs-on: self-hosted
  steps:
   - uses: actions/checkout@v2
   - uses: actions/setup-node@v2
    with:
     node-version: '16'
   - run: |
     npm install
 test:
  runs-on: self-hosted
  strategy:
   matrix:
    submission: [a, b, c, ts-ignore, linting-error, non-green-tests, empty]
  steps:
   - uses: actions/checkout@v2
   - uses: actions/setup-node@v2
    with:
     node-version: '16'
   - uses: ./
    with:
     submission-directory: solutions/${{ matrix.submission }}

test.yml (CI workflow file)
GitHub Actions Results



Example CI Pipeline - Autograder
At a glance, see history of build



CI Pipelines automate performance testing

https://github.com/neu-
se/CONFETTI/actions 

Every commit: Run 10 minute 
performance test on 5 

benchmarks, repeating each test 
5 times (25 concurrent jobs)

On Demand: Run 24 hour 
performance test on 5 

benchmarks, repeating each test 
20 times (100 concurrent jobs)

https://github.com/neu-se/CONFETTI/actions
https://github.com/neu-se/CONFETTI/actions


CI Pipelines automate benchmarking

On Demand: Run 24 hour 
performance test on 5 

benchmarks, repeating each test 
20 times (100 concurrent jobs)

https://github.com/neu-se/CONFETTI/actions 

https://github.com/neu-se/CONFETTI/actions


Continuous Integration is Highly Configurable
Determining how to apply CI can be non-trivial for a larger project, all with a cost vs 
quality tradeoff: what is the cost of automation vs the value of developer time?

• Do we integrate changes immediately, or do a pre-commit test?
• Which tests do we run when we integrate?
• When do we integrate code review?
• How do we compose the system under test at each point?

My Social Network App

Cache 
Check

Send 
response

Build 
friends list

Build 
Suggestions

Build 
Newsfeed

Changed code

Other developers’ changed code



Attributes of effective CI processes
• Policies:

• Do not allow builds to remain broken for a long 
time

• CI should run for every change
• CI should not completely replace pre-commit 

testing

• Infrastructure:
• CI should be fast, providing feedback within 

minutes or hours
• CI should be repeatable (deterministic)



Effective CI processes are run often enough 
to reduce debugging effort
• Failed CI runs indicate a bug was 

introduced, and caught in that run
• More changes per-CI run require more 

manual debugging effort to assign blame
• A single change per-CI run pinpoints the 

culprit



Effective CI processes allocate enough 
resources to mitigate flaky tests
• Flaky tests might be dependent on timing (failing due to timeouts)
• Running tests without enough CPU/RAM can result in increased flaky 

failure rates and unreliable builds

“The Effects of Computational Resources on Flaky Tests”, Silva et al

https://arxiv.org/abs/2310.12132


Continuous Integration Service Models
• Self-hosted/managed on-premises or 

in cloud
• Jenkins
• Fully cloud managed
• GitHub Actions, CircleCI, Travis, many 

more…
• Billing model: pay per-build-minute 

running on SaaS infrastructure
• “Self-hosted runners” run builds on 

your own infrastructure, usually 
“free”

Self-managed Vendor-managed

Physical data center

Network

Storage

Physical Server

Operating System

Middleware

Application

Virtualization

Self-managed, using 
VMs

Physical data center

Network

Storage

Physical Server

Operating System

Middleware

Application

Virtualization

SaaS

Physical data center

Network

Storage

Physical Server

Operating System

Middleware

Application

Traditional, on-
premises computing

Virtualization



CI in practice at Google
Large scale example: Google TAP
• 50,000 unique changes per-day, 4 billion test cases per-day
• Pre-submit optimization: run fast tests for each individual change (before code review). 

Block merge if they fail.
• Then: run all affected tests; “build cop” monitors and acts immediately to roll-back or fix
• Build cop monitors integration test runs
• Average wait time to submit a change: 11 minutes

“Software Engineering at Google: Lessons Learned from Programming Over Time,” Wright, Winters and Manshreck, 2020 (O’Reilly)



Challenges and Solutions for Repeatable Builds
• Which commands to run to produce an executable? 

(build systems)
• How to link third-party libraries? (dependency 

managers)
• How to specify system-level software requirements? 

(containers)
• How to specify infrastructure requirements? 

(Infrastructure as code)



Dependency Managers Organize External 
Dependencies
• Addresses this problem: “Before you compile this code, install 

commons-lang from the Apache website”
• Declare a dependency using coordinates (unique ID of a package plus 

version)
• Packages are archived in common repositories; fetched/linked by 

dependency manager
• Dependency managers handle transitive dependencies 🐉
• Examples: Maven, NPM, pip, cargo, apt



Specify and Depend on Package Versions with 
Care
• Semantic Versioning is often expected:
• Library maintainers expected to indicate breaking 

changes with version numbers
• Dependency consumers can specify constraints on 

versions (e.g. accept 2.0.x)

Distribution of dependencies of all packages in NPM over time (2023, Pinckney et al)

https://semver.org/


Build Systems Orchestrate Software 
Engineering Tasks
• “Orchestrate” -> Execute in the right order, ideally with 

concurrency, example tasks:
• Installing dependencies
• Compiling the code
• Running static analysis
• Generating documentation
• Running tests
• Creating artifacts for customers
• Deploying Code

• Example build systems: xMake, ant, maven, gradle, npm…



Continuous Delivery
“Faster is safer”: Key values of continuous delivery
• Release frequently, in small batches
• Maintain key performance indicators to evaluate the impact of updates
• Phase roll-outs
• Evaluate business impact of new features



Motivating scenario: Failed Deployment at Knight 
Capital

“In the week before go-live, a Knight engineer manually 
deployed the new RLP code in SMARS to its 8 servers. 
However, he made a mistake and did not copy the new 
code to one of the servers. Knight did not have a second 
engineer review the deployment, and neither was there an 
automated system to alert anyone to the discrepancy. “

https://www.henricodolfing.com/2019/06/project-failure-case-study-knight-capital.html 

https://www.henricodolfing.com/2019/06/project-failure-case-study-knight-capital.html


What could Knight capital have done better?
• Use capture/replay testing instead of driving market 

conditions in a test
• Avoid including “test” code in production 

deployments
• Automate deployments
• Define and monitor risk-based KPIs
• Create checklists for responding to incidents



Continuous Delivery != Immediate Delivery
• Even if you are deploying every day 

(“continuously”), you still have some latency
• A new feature I develop today won't be released 

today
• But, a new feature I develop today can begin the 

release pipeline today (minimizes risk)
• Release Engineer: gatekeeper who decides when 

something is ready to go out, oversees the actual 
deployment process



Split Deployments Mitigate Risk
• Idea: Deploy to a complete production-like environment, but don't 

have users use it, collect preliminary feedback
• Lower risk if a problem occurs in staging than in production
• Examples:

• “Eat your own dogfood”
• Beta/Alpha testers



Continuous Delivery Leverages Relies on 
Staging Environments

Testing 
Environment

Staging Environment Production Environment

Beta/Dogfooding User Requests
Developer 

Environments

Revisions are “promoted” towards production

Q/A takes place in each stage (including production!)



Continuous Delivery Tools
• Simplest tools deploy from a branch to a service (e.g. Render.com, 

Heroku)
• More complex tools:

• Auto-deploys from version control to a staging environment + promotes through 
release pipeline

• Monitors key performance indicators to automatically take corrective actions
• Example: “Spinnaker” (Open-Sourced by Netflix, c 2015)

Example CD pipeline from Spinnaker’s documentation: https://spinnaker.io/docs/concepts/#application-deployment 

https://spinnaker.io/
https://spinnaker.io/docs/concepts/


Continuous Delivery Relies on Infrastructure 
As Code
• Provisioning servers is tedious and error prone

• Deploy a VM, then ssh to it, install some packages, etc

• Keeping servers up-to-date is also a struggle
• Ideal:

• “Give me HAProxy with some configuration file, and 
keep that configuration in a git repo, and when I 
change it, roll out an update”

• “Give me some containers running my NodeJS app, 
and when I update my app, roll it out to those 
containers”

• “Give me a bunch of servers with MongoDB set up in a 
cluster”



Infrastructure as Code represents complex 
infrastructure in “recipes”
• Goal: Create a system that, when run, can 

automatically bring physical or virtual machines to 
some configured state
• These configurations can then go into version control, 

code review, etc
• Metaphor: “Recipes” for configuring servers, 

organized into “cookbooks”
• Engineers define “healthy” states for infrastructure, then 

system automatically provisions, validates, and (if 
needed) repairs deployed resources

• “Oh, this is how they do things at Amazon” - Inspiration 
for Chef, c 2009 

• Other tools with similar aims: Puppet (c 2005), Ansible (c 
2012)

https://www.chef.io/blog/announcing-chef


Continuous Delivery Relies on Monitoring
• Consider both direct (e.g. business) metrics, and indirect (e.g. system) metrics

• Hardware
• Voltages, temperatures, fan speeds, component health

• OS
• Memory usage, swap usage, disk space, CPU load

• Middleware
• Memory, thread/db connection pools, connections, response time

• Applications
• Business transactions, conversion rate, status of 3rd party components



Tools for Monitoring Deployments
• Nagios (c 2002): Agent-based architecture (install agent on each 

monitored host), extensible plugins for executing “checks” on hosts
• Track system-level metrics, app-level metrics, user-level KPIs



Monitoring can help identify operational issues

Grafana (AGPL, c 2014) InfluxDB (MIT license, c 2013)



Continuous Delivery Tools Take Automated 
Actions
• Example: Automated roll-back of updates at Netflix 

based on SPS

https://www.youtube.com/watch?v=qyzymLlj9ag

https://www.youtube.com/watch?v=qyzymLlj9ag


From Monitoring to Observability
Understanding what is going on inside of our deployed systems

Example dashboard by DataDog:
https://www.datadoghq.com/blog/gke-
dashboards-integration-improvements/ 

https://www.datadoghq.com/blog/gke-dashboards-integration-improvements/
https://www.datadoghq.com/blog/gke-dashboards-integration-improvements/


New Tools allow Observability inside of Apps, Too

Screenshot: https://www.akitasoftware.com/blog-posts/plug-and-play-endpoint-views-for-metrics-errors

https://www.akitasoftware.com/blog-posts/plug-and-play-endpoint-views-for-metrics-errors


Monitoring Services Take Automated Actions



Beware of Metrics
McNamara Fallacy
• Measure whatever can be easily measured
• Disregard that which cannot be measured easily
• Presume that which cannot be measured easily is 

not important
• Presume that which cannot be measured easily 

does not exist



Deployment Example: Facebook.com
Pre-2016

~1 week of development

3x Daily

Stabilize

release branch
Weekly

3 days

All changes from week
that are ready for release

Release Branch
4 days All changes that survived stabilizing

Developers working in their own branch

Your change doesn’t go out 
unless you’re there that day at 

that time to support it!

~1 week of development

master branch

When feature is ready, push as 1 change to master branch

production “When in doubt back out”



Deployment Example
Chuck Rossi, Director Software Infrastructure & Release Engineering @ Facebook

“Our main goal was to make sure that the 
new system made people’s experience 
better — or at least, didn’t make it worse. 
After a year of planning and development, 
over the course of three days we enabled 
100% of our production web servers to 
run code deployed directly from master”

“Rapid release at massive scale” https://engineering.fb.com/2017/08/31/web/rapid-release-at-massive-scale/

https://engineering.fb.com/2017/08/31/web/rapid-release-at-massive-scale/


Deployment Example
Post-2016: Truly continuous releases from master branch

https://engineering.fb.com/2017/08/31/web/rapid-release-at-massive-scale/

https://engineering.fb.com/2017/08/31/web/rapid-release-at-massive-scale/


Compare Continuous Delivery and TDD
• Test driven development
• Write and maintain tests per-feature
• Unit tests help locate bugs (at unit level)
• Integration/system tests also needed to locate 

interaction-related faults

• Continuous delivery
• Write and maintain high-level observability metrics
• Deploy features one-at-a-time, look for canaries in 

metrics
• Write fewer integration/system tests



Review
• By now, you should be able to…
• Describe how continuous development helps to catch 

errors sooner in the software lifecycle
• Describe strategies for performing quality-assurance on 

software as and after it is delivered
• Compare and contrast continuous delivery with test 

driven development as a quality assurance strategy


